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Salvador Garćıa Ferreira ∗ Osvaldo Guzmán †

Abstract

We study the Rudin-Keisler pre-order on Fréchet-Urysohn ideals on
ω. We solve three open questions posed by S. Garćıa-Ferreira and J.
E. Rivera-Gómez in the articles [6] and [7] by establishing the following
results:

• For every AD family A, there is an AD family B such that A⊥ <RK

B⊥.
• If A is a nowhere MAD family of size c then there is a nowhere MAD

family B such that I (A) and I (B) are Rudin-Keisler incomparable.

• There is a family {Bα | α ∈ c} of nowhere MAD families such that if
α 6= β, then I (Bα) and I (Bβ) are Rudin-Keisler incomparable.

Here I(A) denotes the ideal generated by an AD family A.
In the context of hyperspaces with the Vietoris topology, for a Fréchet-

Urysohn-filter F we let Sc (ξ (F)) be the hyperspace of nontrivial conver-
gent sequences of the space consisting of ω as discrete subset and only
one accumulation point F whose neighborhoods are the elements of F
together with the singleton {F}. For a FU-filter F we show that the
following are equivalent:

• F is a FUF-filter.

• Sc (ξ (F)) is Baire.

1 Introduction

Filters1 on countable sets play a fundamental role in set theory, topology, model
theory and many other branches of mathematics. Given a filter F on ω, we
may define the topological space ξ(F) as follows: its underlying set is ω ∪
{F}, the elements of ω are isolated points and the open neighborhoods of F
are of the form {F} ∪ F where F ∈ F . This is a very interesting space since
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1The undefined notions will be reviewed in the next section.
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the combinatorial properties of F nicely translate into topological properties of
ξ(F). For example, it is easy to see that given A ⊆ ω, the following holds:

A ∪ {F} is an open set of ξ(F) if and only if A ∈ F
F ∈ A if and only if A ∈ F+

A converges to F if and only if A is a pseudointersection
of F

In this paper, we will be mainly interested the filters F whose ξ(F) is Fréchet-
Urysohn. Recall that a topological space X is Fréchet-Urysohn if for every
x ∈ X and Y ⊆ X, if x ∈ Y , then there is a sequence (xn)n<ω in Y that
converges to x. It is easy to see that metric spaces are Fréchet-Urysohn, but
there are many examples of Fréchet-Urysohn spaces that are not metric. We
say that a filter F is Fréchet-Urysohn (of F is a FU-filter) if the space ξ(F)
is Fréchet-Urysohn. Using the translation above, it is easy to see that F is a
FU-filter if and only if for every A ⊆ ω such that F ∩ A 6= ∅, for all F ∈ F ,
there is B ∈ [A]ω such that B ⊆∗ F for all F ∈ F . An example of a FU-filter
is the Fréchet filter Fr which consists of all the coinfinite subsets of ω. In [10]
it was proved that there are 2c-many pairwise non-equivalent FU-filters (where
c denotes the size of the continuum). In this paper, we continue studying the
Fréchet-Urysohn filters by solving three problems posed in the papers [6] and
[7].

For us, it will be more convenient to work with ideals instead of filters. Thus,
an ideal I is called a FU-ideal (or nowhere tall) if the filter I∗ is a FU-filter. In
other words, I is a FU-ideal, if for every A ∈ I+ there is B ∈ [A]

ω
such that

B ∩ I is finite for every I ∈ I.

Since filters and ideals are very important in infinite combinatorics and topol-
ogy, it is desirable to develop tools in order to classify them so that we can
achieve a better understanding of their nature. A way to classify filters and
ideals that has proven to be very useful is the Rudin-Keisler pre-order :

Definition 1.1 (Rudin-Keisler pre-order) Let I be an ideal on X and J
an ideal on Y.

1. We say f : X −→ Y is a Rudin-Keisler morphism (or Rudin-Keisler
function) if for every A ⊆ Y the following holds:

A ∈ J if and only if f−1 (A) ∈ I.

In this case, we say f is a Rudin-Keisler morphism from (X, I) to (Y,J ) .

2. We say J ≤RK I if there is a Rudin-Keisler morphism from (X, I) to
(Y,J ) .
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3. We say that I and J are RK-equivalent if J ≤RK I and I ≤RK J .

4. By J <RK I we mean that J ≤RK I but J and I are not RK-equivalent.

In the articles [6] and [7] the Rudin-Keisler pre-order was successfully ap-
plied in the study and classification of the FU-filters (hence, the FU-ideals).
We continue this line of research and solve three problems posed in those pa-
pers, providing a clearer picture of the structure of the class of FU-filters with
the Rudin-Keisler pre-order. After that, we study the hyperspace of nontrivial
convergent sequences of the space ξ(F) (for F a FU-filter). Before stating our
results on this topic, we will first explain the context of the problem:

The systematic study of the hyperspace of nontrivial convergent sequences
Sc(X) of a Fréchet-Urysohn nondiscrete space X was initiated in [5], where
Sc(X) is equipped with the Vietoris topology. The categorical properties on
Sc(X), together with other topological properties, were considered in [8]. In-
deed, in that paper, it was proved that Sc(X) is never a Baire space when the
space X is crowded, and this result was improved in [8] by showing that Sc(X)
is meager whenever X is crowded (this assertion was also proved independently
in [21]). Hence, if Sc(X) is Baire, then X has a dense subset of isolated points.
Nontrivial examples of spaces X for which Sc(X) is Baire were given in [8]. The
authors of [8, P. 2.8] proposed the following problem:

Problem 1.2 Determine the FU-filters F on ω for which the space Sc (ξ (F))
is Baire.

In this paper we will prove that if F is a FU-filter, then the space Sc (ξ (F))
is Baire if and only if F is a FUF-filter, providing a complete solution to Problem
1.2 (the notion of FUF-filter will be reviewed in Section 4).

The paper is organized as follows: In Section 2 we introduce some definitions
and notation that will be used throughout the paper. In Section 3 we study the
Rudin-Keisler pre-order restricted to FU-filters, providing answers to problems
from [6] and [7]. The three questions mentioned in the abstract and their re-
spective solutions will be explicitly stated in that section. In Section 4 we study
the hyperspace of nontrivial convergent sequences of spaces of the form ξ(F).
We answer Problem 1.2 and obtain more results.

2 Preliminaries and Notation

Most of our definitions and notation are standard, but for the convenience
of the reader, in this section we will review some notions that will be used
throughout the paper.
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Let A,B be two sets. We write A ⊆∗ B (A is an almost subset of B) if A\B
is finite. Let X ⊆ ℘ (ω) (If X is any set, by ℘ (X) we denote the power set of
X) and A ∈ [ω]

ω
, we say that A is a pseudointersection of X if A is almost

included in every element of X .

Let X be a non-empty set. Informally, we can think of filters on X as being
a collection of “big” subsets of X while ideals are collections of “small” subsets
of X. The formal definitions are the following: (for us, all ideals contain all finite
sets).

Definition 2.1 Let X be a set.

1. We say that F ⊆ ℘ (X) is a filter on X if the following conditions hold:

(a) X ∈ F and ∅ /∈ F .
(b) If A ∈ F and A ⊆∗ B then B ∈ F .
(c) If A,B ∈ F then A ∩B ∈ F .

2. We say that I ⊆ ℘ (X) is an ideal on X if the following conditions hold:

(a) X /∈ I and ∅ ∈ I.
(b) If A ∈ I and B ⊆∗ A then B ∈ I.
(c) If A,B ∈ I then A ∪B ∈ I.

Given an ideal I on ω, we define I+ = ℘ (ω) \ I. If X is a collection of
subsets of ω, we define X ∗ = {ω \A | A ∈ X}. The dual filter of an ideal I is
the filter I∗. If F is a filter, define F+ = (F∗)+. Note that F ∈ F+ if and only
if ω \ F /∈ F .

We say that two sets A,B ⊆ ω are almost disjoint if A∩B is finite. A family
A ⊆ [ω]

ω
is an AD family if it is infinite and any two of its elements are almost

disjoint. We say that A is a MAD family if it is a maximal AD family. For an
AD family A, the orthogonal of A (denoted by A⊥) is defined as the set of all
X ⊆ ω such that X ∩A is finite for every A ∈ A. It is easy to see that A⊥ is an
ideal and that A is a MAD family if and only if A⊥ is the collection of all finite
subsets of ω.

Given an AD family A, we denote by I(A) the ideal generated by A. In this
way, if X ⊆ ω, then X ∈ I (A) if and only if there are A0, ..., An ∈ A such that
X ⊆∗ A0∪...∪An. We will say that A is nowhere MAD if for every X ∈ I (A)

+
,

we have that [X]
ω ∩ A⊥ 6= ∅. For convenience, the expression “A is nowhere

MAD” will actually mean “A is an AD family and it is nowhere MAD”. It is
not hard to prove that an AD family A is nowhere MAD if and only if I (A) is
a FU-ideal.
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3 The Rudin-Keisler pre-order on Fréchet ideals

We are interested in studying the Rudin-Keisler pre-order on Fréchet filters
and on nowhere MAD families. As mentioned in the abstract, this project was
initiated in the articles [6] and [7]. We will answer some questions that were
left open. The first question that we will address and solve was formulated in
[6, Q. 5.7]:

Problem 3.1 Given an AD family A, is there an AD family B such that A⊥ <RK

B⊥?

We will require several concepts, facts and lemmas before answering the
problem.

Definition 3.2 Let A be an AD family on ω.

1. We define I (A)
++

as the set of all X ∈ [ω]
ω

for which there is B ∈ [A]
ω

such that |X ∩A| = ω for every A ∈ B.

2. A is completely separable if for every X ∈ I (A)
++

there is A ∈ A such
that A ⊆ X.

Given an AD familyA, it is always the case that I(A)
++ ⊆ I(A)

+
, while

equality holds if and only if A is MAD. The existence of a completely separable
MAD family is an old question of P. Erdös and S. Shelah (see [3]), nevertheless,
significant progress has been made on this problem (see [23], [15] and [19]). On
the other hand, the following is an impressive result of P. Simon:

Proposition 3.3 (Simon, [4]) There is a nowhere MAD completely separable
AD family.

The following lemma is well-known, but we provide a proof of it for the sake
of completeness.

Lemma 3.4 Let A be a completely separable AD family. If X ∈ I (A)
++

, then
the set {A ∈ A | A ⊆ X} has size c.

Proof. Since X ∈ I (A)
++

, we know there is a family {An | n ∈ ω} ⊆ A such
that An 6= Am whenever n 6= m and An ∩ X is infinite for every n ∈ ω. We
can now find an almost disjoint family B ⊆ [X]

ω
of size c such that B ∩ An is

infinite for every n ∈ ω and B ∈ B. Since A is completely separable, for every
B ∈ B, there is AB ∈ A such that AB ⊆ B. Finally, note that if B,C ∈ B and
B 6= C, then AB 6= AC since B and C are almost disjoint.

In particular, it follows that every completely separable AD family has size
c. We are ready to answer positively Question 3.1:
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Theorem 3.5 If D is an AD family, then there is an AD family A such that
D⊥ <RK A⊥.

Proof. Let D be and AD family in ω. Let Cn = {n} × ω and define π :
ω×ω −→ ω where π (n,m) = n. Fix two disjoint sets W0,W1 such that c \ω =
W0 ∪ W1 and |Wi| = c for each i < 2. We also fix an enumeration I (D) ∩
[ω]

ω
= {Xα | α ∈W0} . By Proposition 3.3, there is B ⊆ ℘ (ω × ω) a completely

separable AD family such that {Cn | n ∈ ω} ⊆ B. It is easy to see that B has
the following properties:

1. If B ∈ B and B /∈ {Cn | n ∈ ω} then B ∩ Cn is finite for every n ∈ ω.

2. If X ∈ [ω]
ω

then π−1 (X) ∈ I (B)
++

(this holds since {Cn | n ∈ ω} ⊆ B).

Now, we recursively construct an AD family P = {pα | α < c} with the fol-
lowing properties:

1. pn = Cn for every n ∈ ω.

2. For every α < c there is B (pα) ∈ B such that pα ⊆ B (pα) .

3. If α 6= β then B (pα) 6= B (pβ) .

4. If α ≥ ω then pα ⊆ ω×ω is a partial infinite function such that dom (pα) =
π (pα) ∈ I (D) .

5. If α ∈W0 then pα ⊆ π−1 (Xα) .

The construction is straightforward (but note that we need that C is com-
pletely separable in order to satisfy points 2 and 5 above). Fix an enumera-
tion (ω × ω)

ω
= {fα | α ∈W1} we now define the family A = {pα | α ∈W0} ∪{

pα | α ∈W1 ∧
(
f−1α (pα) ∈ D⊥

)}
. Clearly A is an AD family. We will now

prove that π is a Rudin-Keisler morphism from
(
ω × ω,A⊥

)
to
(
ω,D⊥

)
. Let

X ⊆ ω. If X ∈ D⊥, then π−1 (X) ∈ A⊥ because each pα ∈ A is a partial
function whose domain is in I (D) . In case X /∈ D⊥, we find D ∈ D such that
X ∩D is infinite. Let α ∈W0 such that Xα = X ∩D. By definition, pα ∈ A and
pα ⊆ π−1 (Xα) ⊆ π−1 (X) , so π−1 (X) /∈ A⊥. We conclude that D⊥ ≤RK A⊥.

We will now show that there is no Rudin-Keisler morphism from
(
ω,D⊥

)
to
(
ω × ω,A⊥

)
. Obviously, it is enough to see that fα is not a Rudin-Keisler

morphism for every α ∈W1. There are two cases to consider: First assume that
pα ∈ A, this means that f−1α (pα) ∈ D⊥ but obviously pα /∈ A⊥. In case pα /∈ A,
we may conclude that f−1α (pα) /∈ D⊥. Furthermore, since pα ∈ P it follows that
pα ∈ A⊥ (recall that P is an AD family). Hence pα ∈ A⊥ but f−1α (pα) /∈ D⊥,
so fα is not a Rudin-Keisler morphism.
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We will now show that fα(A⊥) 6= B⊥ for every α ∈W1. There are two cases
to be considered for a fixed α ∈ W1: First assume that Dα ∈ B, this means
that f−1α (Dα) ∈ A⊥ but obviously Dα /∈ B⊥. In the second case, assume that
Dα /∈ B. So, by definition, we obtain that f−1α (Dα) /∈ A⊥. Furthermore, since
Dα ∈ D, then Dα ∈ B⊥ (recall that D is an AD family). Hence, Dα ∈ B⊥ but
f−1α (Dα) /∈ A⊥. Therefore, fα(A⊥) 6= B⊥ for every α ∈W1.

We will now consider FU-ideals of the form I (A) where A is a nowhere MAD
family. The following is another open question from [6, Q. 4.6]:

Problem 3.6 Given a nowhere MAD family A of size c, is there a FU-ideal
that is RK-incomparable with I (A)?

To provide a positive answer to the previous question, we shall need the
following concepts and four lemmas:

Definition 3.7 Let A be an AD family of size c.

1. We say an AD family B ⊆ [ω]
ω

is a shrinking of A if the following holds:

(a) For every B ∈ B there is A ∈ A such that B ⊆ A.
(b) Every element of A contains at most one element of B.

2. Define S (A) as the set of all infinite shrinkings B of A such that |B| < c.

3. For B ∈ S (A), we define

IA (B)
+++

= {X ⊆ ω | ∀C ∈ S (A) (B ⊆ C −→X ∈ I (C)+)}.

We will now prove the first lemma.

Lemma 3.8 Let A be an AD family of size c and B ∈ S (A) .

1. If A ∈ A is such that A does not contain an element of B and X ∈ [A]
ω

,
then there is D ∈ S (A) such that B ⊆ D, |B| = |D| and X ∈ IA (D)

+++
.

2. If X ∈ I (B)
+

, then there is D ∈ S (A) such that B ⊆ D, |B| = |D| and
X ∈ IA (D)

+++
.

Proof. For the first assertion, let D ∈ [A]
ω

be such that X�D is infinite, then
define D = B ∪ {D} . To prove (2) we consider two cases: First, assume that
there is A ∈ A such that A ∩X is infinite and A does not contain any element
of B and apply (1) to A∩X. If A∩X is finite for all A ∈ A which do not contain
any element of B, then we have that X ∈ IA (B)

+++
.

Our second lemma is the following.
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Lemma 3.9 Let A be an AD family of size c and B ∈ S (A) . If C is an AD
family, f : ω −→ ω is a function and A ∈ A does not contain any element of
B, then there is D ∈ S (A) such that B ⊆ D, |B| = |D| and one of the following
conditions holds:

1. f−1 (A) ∈ I (C) and A ∈ IA (D)
+++

; or

2. f−1 (A) ∈ I (C)+ and A ∈ I (D).

Proof. For point 1, suppose that f−1 (A) ∈ I (C). According to Lemma 3.8
(1), there is D ∈ S (A) such that B ⊆ D, |B| = |D| and A ∈ IA (D)

+++
. For

point 2, if f−1 (A) ∈ I (C)+, then define D = B ∪ {A}.

The third lemma is the following:

Lemma 3.10 Let A be an AD family of size c and B ∈ S (A). For every AD
family C of size c and for every function f : ω −→ ω there is D ∈ S (A) such
that B ⊆ D, |B| = |D| and one of the following conditions holds:

1. Either there is X ∈ I (C) such that f−1 (X) ∈ IA (D)
+++

or

2. there is X ∈ I (C)+ such that f−1 (X) ∈ I (D) .

Proof. We start with point 1. In case that there is X ∈ C such that f−1 (X) ∈
I (B)

+
, by Lemma 3.8 we find D ∈ S (A) such that B ⊆ D, |B| = |D| and

f−1 (X) ∈ IA (D)
+++

.

For point 2, assume f−1 (C) ∈ I (B) for every C ∈ C. We claim that we
can define D = B. For every C ∈ C let FC ∈ [B]

<ω
and sC ∈ [ω]

<ω
such

that f−1 (C) ⊆
⋃
FC ∪ sC . Since |B| < c and |C| = c there are F ∈ [B]

<ω
,

s ∈ [ω]
<ω

and {Cn | n < ω} ⊆ C such that F = FCn , s = sCn for every n < ω
and Cn 6= Cm whenever n 6= m. Note that if X =

⋃
Cn then X ∈ I (C)+ while

f−1 (X) ∈ I (B) .

The next lemma will be used in the proof of the two upcoming theorems.

Lemma 3.11 Let A be a nowhere MAD family and {Bα : α < c} a collection
of AD families such that:

1. Bα ∈ S(A) for each α < c, and

2. Bα ⊆ Bβ provided that α < β < c.

Then,
⋃
α<c Bα is a nowhere MAD family.
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Proof. Put B :=
⋃
α<c Bα. It is evident that B is an AD family. Now, fix

X ∈ I(B)+. If X ∈ I(A)+, then there is Y ∈ [X]ω ∩ A⊥ and it is evident from
(1) that Y ∈ B⊥. Suppose that X ∈ I(A). Then there is {A0. . . . , Al} ⊆ A and
F ∈ [ω]<ω such that X ⊆ F ∪

(⋃
i≤lAi

)
. Since the set E = {B ∈ B : ∃i ≤ l

(
B ⊆

Ai
)
} has size at most l, there exists α < c such that E ⊆ Bα and since Bα ∈ S(A)

and Y := X \
(⋃

B∈E B) is infinite, we must have that Y ∈ [X]ω ∩ B⊥.

We can now answer Question 3.6:

Theorem 3.12 If A is a nowhere MAD family of size c, then there is a nowhere
MAD family B such that I (A) and I (B) are RK-incomparable.

Proof. Let A be a nowhere MAD family of size c. Enumerate the set of all
functions from ω to ω as {fα : α < c}. By using alternatively Lemmas 3.9 and
3.10, we inductively define a set {Diα : i < 2 and α < c} of AD families such
that:

1. Diα ∈ S (A) for every i < 2 and α < c.

2. D0
α ⊆ D1

α for every α < c.

3. Diβ ⊆ D0
α provided that i < 2 and β < α < c.

4. |D0
α| < c for every α < c.

5. For every α < c one of the following conditions holds:

5.i) Either there is X ∈ I (A) such that f−1α (X) ∈ IA
(
D0
α

)+++
or

5.ii) there is X ∈ I (A)
+

such that f−1α (X) ∈ I
(
D0
α

)
.

6. For every α < c one of the following conditions is satisfied

6.i) Either there is X ∈ IA
(
D1
α

)+++
such that f−1α (X) ∈ I(A) or

6.ii) there is X ∈ I
(
D1
α

)
such that f−1α (X) ∈ I(A)

+
.

Finally, define B =
⋃
α<cD1

α. It follows from Lemma 3.11 that B is a nowhere
MAD family. By clauses 5.i) and 5.ii) we deduce that I (A) 6≤RK I (B). Clauses
6.i) and 6.ii) guarantee that I (B) 6≤RK I (A). It follows that I (A) and I (B)
are RK incomparable.

The following is another problem from [7, Q. 6.10]:

Problem 3.13 Is there a RK-antichain of size c consisting of FU-ideals?

This problem is answered as follows:
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Theorem 3.14 There is a family {Bα | α ∈ c} of nowhere MAD families such
that if α, β < c and α 6= β, then I (Bα) and I (Bβ) are RK-incomparable.

Proof. Let {Aα | α ∈ c} be a family2 of nowhere MAD families, each one of
size c. Let Aα = {Aα (ξ) | ξ ∈ c}. We now define P as the set of all p such that
there is βp < c with the following properties:

1. p is a function with domain contained in βp.

2. If α ∈ dom (p) , then p (α) ∈ S(Aα) and |p (α)| ≤ βp + ω.

Given p, q ∈ P, define p ≤ q if the following conditions hold:

1. dom (q) ⊆ dom (p) .

2. If α ∈ dom (q) , then q (α) ⊆ p (α) .

We need the following notions:

1. Let α, ξ ∈ c. Define Dα (ξ) as the set of all p ∈ P such that:

(a) α ∈ dom (p) .

(b) There is B ∈ p (α) such that B ⊆ Aα (ξ) .

2. Let α, γ ∈ c with α 6= γ and f ∈ ωω. Define E (α, γ, f) as the set of all
p ∈ P such that α, γ ∈ dom (p) and there is A ∈ Aα that satisfies one of
the following conditions:

(a) f−1 (A) ∈ I(p(γ)) and A ∈ IAα(p (α))+++ or,

(b) f−1 (A) ∈ IAγ (p (γ))+++ and A ∈ I(p (α) ).

We now have the following:

Claim 3.15 Let q ∈ P and W such that either W = Dα (ξ) (for some α, ξ < c)
or W = E (α, γ, f) (for some α, γ < c and f ∈ ωω). There is p ∈ P with the
following properties:

1. p ≤ q.

2. p ∈W.

3. |dom (p)| ≤ |dom (q)|+ ω.

2We really do not need that Aα 6= Aβ whenever α 6= β. In fact, we could assume that
Aα = Aβ for every α, β ∈ c. However, we believe that keeping different subindices makes the
proof easier to understand.
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4. If η ∈ dom (q) , then |p (η)| ≤ |q (η)|+ ω.

The claim is trivial in case W = Dα (ξ) , so we will focus on the case that
W = E (α, γ, f) .

Let q ∈ P, we want to extend q to an element of E (α, γ, f) . Without lost of
generality, we may assume that α, γ ∈ dom (q) . Let A ∈ Aα such that A does
not contain an element of q (α) (such A exists since |Aα| = c, while |q (α)| < c).
We now apply Lemma 3.9 (with A = Aα, B = q (α) , C = q (γ) , f = f and
A = A) in order to find D ∈ S(Aα) such that q (α) ⊆ D, |D| = |q (α)| and one
of the following conditions holds:

1. f−1 (A) ∈ I(q (γ) ) and A ∈ IAα(D)+++ or

2. f−1 (A) ∈ I(q (γ) )
+

and A ∈ I(D).

Define p1 as follows:

1. dom (p1) = dom (q) .

2. p1 (α) = D.

3. If ξ ∈ dom (p1) and ξ 6= α, then p1 (ξ) = q (ξ) .

It is clear that p1 ∈ P and p1 ≤ p. We have the following:

1. f−1 (A) ∈ I(p1 (γ) ) and A ∈ IAα(p1 (α))+++ or

2. f−1 (A) ∈ I(p1 (γ) )
+

and A ∈ I(p1 (α) ).

If case 1 above holds, then p1 ∈ E (α, γ, f) and we are done, so we will now
assume that case 2 is the one that is true. We now apply the second point of
Lemma 3.8 (with A = Aγ , B = p1 (γ) and X = f−1 (A)) and find D1 ∈ S(Aγ)

such that p1 (γ) ⊆ D1, |D| = |p1 (γ)| and f−1 (A) ∈ IAγ (D1)+++. Define p2 as
follows:

1. dom (p2) = dom (p1) .

2. p2 (γ) = D1.

3. If ξ ∈ dom (p2) and ξ 6= γ, then p2 (ξ) = p1 (ξ) .

It follows that f−1 (A) ∈ IAγ (p2 (γ))+++ and A ∈ I(p2 (α) ), so p2 ∈
E (α, γ, f) . This finishes the proof of the claim.

Now, with a careful bookkeeping, we can recursively build G = {pα | α <
c} ⊆ P with the following properties:
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1. pα ≤ pβ whenever β < α.

2. G ∩Dα (ξ) 6= ∅ for every α, ξ < c.

3. G ∩ E (α, γ, f) 6= ∅ for every α, γ < c with α 6= γ and f ∈ ωω.

For every α < c, define Bα =
⋃
{p (α) | p ∈ G}. Using Lemma 3.11, one sees

that {Bα | α < c} is a family of nowhere MAD families. Moreover, I (Bα) and
I (Bβ) are RK-incomparable whenever α 6= β.

Now that we know that there is a RK-antichain of size c, it is natural to ask
the following questions:

Problem 3.16 Is there a RK-antichain of size c+ consisting of FU ideals?

Problem 3.17 Is there a strictly increasing RK-chain of size c consisting of FU
ideals?

The last question is related to Theorem 3.5:

Problem 3.18 Given two AD families A and B, is there an AD family C such
that A⊥ <RK C⊥ and B⊥ <RK C⊥?

4 The hyperspace of convergent sequences

If X is a Fréchet-Urysohn space, the nontrivial convergent3 sequences in X
carry a lot of information on the topological properties of X. Obviously a
nontrivial convergent sequence is a closed subspace of X, so we can view the
set of nontrivial convergent sequences of X as a subspace of its hyperspace of
compact sets (equipped with the Vietoris topology).

For the convenience of the reader, we will review the basics of hyperspaces
and the Vietoris topology. Let X be a topological space, by K (X) we denote
the set of all non-empty compact subspaces of X. Let U ⊆ X be a non-empty
open set. Define:

U+ = {K ∈ K(X) | K ⊆ U}
U− = {K ∈ K(X) | K ∩ U 6= ∅}

The Vietoris topology is the topology on K(X) generated by the sets of the
form U+ and U− (where U is a non-empty open set). We now introduce the
most important notion of the section:

3By a nontrivial convergent sequence we mean a homeomorphic copy of ω + 1 (with the
order topology).
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Definition 4.1 Let X be a topological space. By Sc (X) we denote the set of
all nontrivial sequences of X.

Since Sc (X) is a subset of K(X), we endow Sc (X) with the subspace topol-
ogy inherited by K (X) . The reader wishing to know more about subspaces
of convergent sequences may consult [5], [8] and [21]. In this section, we will
characterize the Fréchet filters for which the subspace of nontrivial convergent
sequences is Baire, answering a question asked in [8].

Let X be a Fréchet-Urysohn space that has a dense set D of isolated points.
The topological game GS(X,β, α) introduced in [8] is defined as follows:

Players α and β will take turns choosing a pair (E,W ) consisting of a non-
empty finite subset E of D and a nondiscrete open subset W disjoint from E
as follows: The player β goes first by choosing a pair (F0, U0) consisting of a
non-empty finite subset F0 of D and a nondiscrete open subset U0 disjoint from
F0. Then player α chooses a pair (G0, V0) such that G0 is a non-empty finite
subset G0 ⊆ U0 ∩ D and a nondiscrete open subset V0 contained in U0 and
missing G0 and so on as it is shown in the diagram

β (F0, U0) ... (Fn, Un) ...
α (G0, V0) ... (Gn, Vn) ...

where the following holds for every n ∈ ω:

1. Fn, Gn ∈ [D]
<ω

and Fn 6= ∅ 6= Gn.

2. Un, Vn ⊆ X are nondiscrete open sets.

3. Fn ∩ Un = ∅ = Gn ∩ Vn.

4. Gn ∪ Vn ⊆ Un.

5. Fn+1 ∪ Un+1 ⊆ Vn.

We declare that player α wins the match if the countable set
⋃
n<ω(Fn∪Gn)

converges to some point of X. Otherwise, we say that player β wins. We will
use the following Theorem:

Theorem 4.2 (Garćıa-Ferreira and Rojas-Hernández, [9]) If X is a Fréchet-
Urysohn nondiscrete space, then the hyperspace Sc(X) is Baire if and only if X
has a dense set of isolated points D and the space X does not admit a winning
strategy for the player β in the game GS(X,β, α).

13



Let F be a filter on ω. To simplify our combinatorial arguments, we redefine
the game GS(ξ(F), β, α) as follows:

β (s0, F0) ... (sn, Fn) ...
α (t0, G0) ... (tn, Gn) ...

where the following holds for every n ∈ ω:

1. sn, tn ∈ [ω]
<ω

and sn 6= ∅ 6= tn.

2. Fn, Gn ∈ F .

3. sn ∩ Fn = ∅ = tn ∩Gn.

4. tn ∪Gn ⊆ Fn.

5. sn+1 ∪ Fn+1 ⊆ Gn.

We will say that the player α wins the match if
⋃
n<ω (sn ∪ tn) is a a pseu-

dointersection of F . For convenience, the game GS(ξ(F), β, α) will be simply
denoted by GS (F , β, α). We get the following corollary from Theorem 4.2.

Corollary 4.3 Let F be a Fréchet filter on ω. The following are equivalent:

1. Sc (ξ (F)) is Baire.

2. The player β does not have a winning strategy in the game GS (F , β, α) .

In order to study the categorical properties of the space ξ (F), we will need
the following notion:

Definition 4.4 Given A ∈ ℘ (ω) , define [A]
<ω
+ = [A]

<ω \{∅} . For a filter F on

ω, we define the filter F<ω on [ω]
<ω
+ as the filter generated by

{
[A]

<ω
+ : A ∈ F

}
.

It is easy to see that X ∈ (F<ω)
+

if and only if for every A ∈ F , there is s ∈
X such that s ⊆ A. In the same way as with F , we define the topological space
ξ(F<ω) (whose underlying set is [ω]

<ω
+ ∪ {F<ω}). We also have the following

simple remark:

Lemma 4.5 Let F be a filter on ω and Y = {sn | n ∈ ω} ⊆ [ω]
<ω
+ a family of

pairwise disjoint sets. The following are equivalent:

1. Y is a pseudointersection of F<ω.

2.
⋃
Y is a pseudointersection of F .
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Proof. (1) ⇒ (2). Assume that Y is a pseudointersection of F<ω and fix
A ∈ F . Since [A]

<ω
+ ∈ F<ω, we know that Y ⊆∗ [A]

<ω
. Let n < ω such that

sm ⊆ A for every m > n. It follows that
⋃

n<m<ω
sm ⊆ A, so

⋃
Y is almost

contained in A.
(2) ⇒ (1). Suppose that

⋃
Y is a pseudointersection of F and fix A ∈ F .

Since
⋃
Y is a pseudointersection of F , we know that

⋃
Y ⊆∗ A and since Y

consists of pairwise disjoint sets, it follows that there is n < ω such that sm ⊆ B
for every m > n, which implies that Y ⊆∗ [A]

<ω
.

It turns out, that in the case for filters, the previously defined game can be
greatly simplified. Let F be a filter on ω, the game GS (F , β, α) is defined as
follows:

β s0 s1 ... sn ...
α G0 G1 ... Gn ...

where the following conditions hold for every n < ω:

1. s0 is a finite subset of ω.

2. ∅ 6= sn+1 ∈ [Gn]
<ω

.

3. Gn ∈ F .

4. Gn+1 ⊆ Gn.

5. sn ∩Gn = ∅.

We will say that the player α wins the match if
⋃
n∈ω

sn is a a pseudointersec-

tion of F .Note thatGS (F , β, α) is a simplified version of the gameGS (F , β, α) ;
player β does not need to play filter sets and player α no longer needs to play
finite sets.

We will need another game, which was introduced by G. Gruenhage in his
dissertation (see [11] and [12]). Let X be a topological space and a ∈ X. The
Gruenhage game H (X, a) is played between the players Open and Point as
follows:

Open U0 U1 ... Un ...
Point b0 b1 ... bn ...

where Un ⊆ X is an open neighborhood of a and bn ∈ Un for every n ∈
ω. We will say that the Open player wins the game if the sequence 〈bn〉n<ω
converges to a. We shall prove that, in a natural sense, the games GS (F , β, α, ) ,
GS (F , β, α, ) and H(ξ(F<ω),F<ω) are equivalent.
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Theorem 4.6 Let F be a FU-filter on ω.

1. The following are equivalent:

(a) Player β has a winning strategy in GS (F , β, α, ) .
(b) Player β has a winning strategy in GS (F , β, α) .

(c) The Point player has a winning strategy in H(ξ(F<ω),F<ω).

2. The following are equivalent:

(a) Player α has a winning strategy in GS (F , β, α) .

(b) Player α has a winning strategy in GS (F , β, α) .

(c) The Open player has a winning strategy in H(ξ(F<ω),F<ω).

Proof. (1) (a) ⇒ (b). First, assume that σ is a winning strategy for player β
in the game GS (F , β, α). We shall define a winning strategy π in GS (F , β, α).
Since F is a FU-filter, we may fix a pseudointersection A of F and for every
F ∈ F we let aF be the first element of F ∩A.

Let us define the strategy π for player β in the game GS (F , β, α) . While
playing a match in GS (F , β, α) , player β will be secretly imagining a match of
GS (F , β, α) in which he is using his strategy σ. The match in GS (F , β, α) is
played as follows:

• Let σ (∅) = (s0, F0) be the first move of player β in GS (F , β, α) (according
to σ). Player β will play s0 in GS (F , β, α) .

• Assume that player α plays G0 in GS (F , β, α) . Let H0 = G0 ∩ F0 and
player β pretends that player α played

(
aH0 , H0

)
, let (s1, F1) be his re-

sponse inGS (F , β, α) (following σ). Now, player β plays s1 inGS (F , β, α) .

• Suppose that player α plays G1 in GS (F , β, α) . Let H1 = G1 ∩ F1 and
player β pretends that player α played

(
aH1 , H1

)
, let (s2, F2) be his re-

sponse in GS (F , β, α). Now, player β plays s2 in GS (F , β, α) .

...
...

GS (F , β, α) :

β (s0, F0) (s1, F1) (s2, F2) ...

α
(
aH0 , H0

) (
aH1 , H1

)
...

GS (F , β, α) :

β s0 s1 s2 ...
α G0 G1 ...
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We claim that the player β won the match in GS (F , β, α) . In other words,
we need to show that Y =

⋃
sn is not a pseudointersection of F . Indeed,

set Z = Y ∪
{
aHn | n < ω

}
and note that Z is the outcome of the match in

GS (F , β, α) simulated by player β. Since σ is a winning strategy, it follows
that Z is not a pseudointersection of F . Since Z ⊆ Y ∪A and the union of two
pseudointersections is a pseudointersection, it follows that Y is not a pseudoin-
tersection of F , so player β won the match.

(1) (b)⇒ (c). Assume that player β has a winning strategy in GS (F , β, α).
We shall show that the Point player has a winning strategy in H(ξ(F<ω),F<ω).
In fact, the proof is very simple, the idea is that the points in ξ(F<ω) \ {F<ω}
are precisely the non-empty finite subsets of ω. Let σ be a winning strategy for
player β in GS (F , β, α) . We shall define a strategy π for the Point player in the
game H(ξ(F<ω),F<ω). While playing a match in H(ξ(F<ω),F<ω), the Point
player will be secretly simulating a match of GS (F , β, α) in which he is playing
as player β using the strategy σ. The match in H(ξ(F<ω),F<ω) is played as
follows:

• Assume the Open player plays [G0]
<ω
+ as its first move inH(ξ(F<ω),F<ω).

Let s0 be the first move of player β in GS (F , β, α) (according to σ). The
Point player imagines player α played G0 \ s0 in GS (F , β, α) , let s1 be
the response of player β. The Point player plays s1 in H(ξ(F<ω),F<ω).

• Assume the Open player now plays [G1]
<ω
+ as its response. The Point player

imagines player α played G1 \ s1 in GS (F , β, α) , let s2 be the response
of player β. The Point player plays s2 in H(ξ(F<ω),F<ω).

...
...

H(ξ(F<ω),F<ω) :

Open [G0]
<ω
+ [G1]

<ω
+ ...

Point s1 s2 ...

GS (F , β, α) :

β s0 s1 s2 ...
α G0 \ s0 G1 \ s1 ...

We claim that the Point player won the match in H(ξ(F<ω),F<ω). In other
words, we need to show that Y = {sn | n < ω} is not a pseudointersection of
[F ]

<ω
. Indeed, since σ is a winning strategy, it follows that the player β won

the simulated game of GS (F , β, α) , which means that
⋃
n<ω

sn is not a pseudoin-

tersection of F . By Lemma 4.5, it follows that Y is not a pseudointersection of
[F ]

<ω
.
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(1) (c)⇒ (a). Now, assume that σ is a winning strategy for the Point player
in the game H(ξ(F<ω),F<ω). We have to prove that player β has a winning
strategy in GS (F , β, α) . We will define a strategy π for player β in the game
GS (F , β, α) . While playing a match in GS (F , β, α) , player β will be secretly
simulating a match of H(ξ(F<ω),F<ω) in which it is playing as the Point player
using the strategy σ. The match in GS (F , β, α) is played as follows:

• Player β starts by imagining that the Open player plays [ω]
<ω
+ as its first

move in H(ξ(F<ω),F<ω). Let s0 be the first move of Point player in
H(ξ(F<ω),F<ω) (according to σ). Now, player β plays (s0, ω \ s0) in
GS (F , β, α) .

• Assume player α plays (t0, G0) as its response in GS (F , β, α). Player β
imagines that the Open player played [G0]

<ω
+ in H(ξ(F<ω),F<ω). Let s1

be the response of the Point player in H(ξ(F<ω),F<ω). Then player β
plays (s1, G0 \ s1) in GS (F , β, α) .

• Assume player α plays (t1, G1) as its response in GS (F , β, α) . Player β
imagines that the Open player played [G1]

<ω
+ in H(ξ(F<ω),F<ω). Let s2

be the response of the Point player in H(ξ(F<ω),F<ω). Then player β
plays (s2, G1 \ s2) in GS (F , β, α) .

...
...

H(ξ(F<ω),F<ω) :

Open [ω]
<ω
+ [G0]

<ω
[G1]

<ω
...

Point s0 s1 s2 ...

GS (F , β, α) :

β (s0, ω \ s0) (s1, G0 \ s1) (s2, G1 \ s2) ...
α (t0, G0) (t1, G1) ...

We claim that player β won the match in GS (F , β, α). In other words,
we need to show that

⋃
n<ω

(sn ∪ tn) is not a pseudointersection of F . Since σ

is a winning strategy, it follows that the Point player won the simulated game
of H(ξ(F<ω),F<ω), which means that Y = {sn | n < ω} is not a converging
sequence to F<ω. This means that Y is not a pseudointersection of F<ω. By
Lemma 4.5, it follows that

⋃
Y is not a pseudointersection of F ; in particular,⋃

n<ω
(sn ∪ tn) is not a pseudointersection of F . This finishes the proof of the first

part of the proposition.
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(2) (a) ⇒ (b). Now, suppose that σ is a winning strategy for player α
in GS (F , β, α). We need to define a strategy π for player α in the game
GS (F , β, α) . While playing a match in GS (F , β, α) , player α will secretly
imagine a match of GS (F , β, α) in which it is using its strategy σ. The match
in GS (F , β, α) is played as follows:

• Let s0 be the first move of player β in GS (F , β, α). Player α imagines that
player β played (s0, ω \ s0) in GS (F , β, α) . Let (t0, G0) be its response in
GS (F , β, α) (according to σ). Now, player α plays G0 in GS (F , β, α) .

• Let s1 be the next move of player β in GS (F , β, α). Player α imagines that
player β played (s1, G0 \ s1) in GS (F , β, α) . Let (t1, G1) be its response
in GS (F , β, α). Now, player α plays G1 in GS(F , β, α).

...
...

GS (F , β, α) :

β (s0, ω \ s0) (s1, G0 \ s1) ...
α (t0, G0) (t1, G1) ...

GS (F , β, α) :

β s0 s1 ...
α G0 G1 ...

We claim that the player α won the match in GS(F , β, α). We need to show
that Y =

⋃
sn is a pseudointersection of F . Since σ is a winning strategy, it

follows that
⋃
n<ω

(sn ∪ tn) is a pseudointersection of F , so clearly Y is also a

pseudointersection.

2. (b)⇒ (c). Assume that σ is a winning strategy for player α inGS (F , β, α) .
We shall show that the Open player has a winning strategy in H(ξ(F<ω),F<ω).
We will define a strategy π for the Open player in the game H(ξ(F<ω),F<ω).
While playing a match in H(ξ(F<ω),F<ω), the Open player will be secretly
playing a match of GS (F , β, α) in which it is playing as player α using the
strategy σ. The match in H(ξ(F<ω),F<ω) is played as follows:

• The Open player imagines that player β played s0 = {0} as its first move
in GS(F , β, α). Let s0 be the first move of player β in GS (F , β, α). Let
G0 be the response of player α in GS(F , β, α) (following σ). The Open
player plays [G0]

<ω
+ in H(ξ(F<ω),F<ω).

• Assume the Point player plays s1 as its response. Then the Open player
imagines that player β played s1 in GS (F , β, α) . Let G1 be the response
of player α. The Open player plays [G1]

<ω
in H(ξ(F<ω),F<ω).
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...
...

H(ξ(F<ω),F<ω) :

Open [G0]
<ω
+ [G1]

<ω
+ ...

Point s1 ...

GS (F , β, α) :

β s0 s1 ...
α G0 G1 ...

We claim that the Open player won the match in H(ξ(F<ω),F<ω). We will
show that Y = {sn | n < ω} is a pseudointersection of F<ω. Since σ is a winning
strategy, we know that player α won the simulated game of GS (F , β, α) , which
means that

⋃
n<ω

sn is a pseudointersection of F . By Lemma 4.5, it follows that

Y is a pseudointersection of [F ]
<ω

.

2. (c)⇒ (a). Finally, assume that σ is a winning strategy for the Open player
in the game H(ξ(F<ω),F<ω). We shall define a winning strategy π for player
α in the game GS (F , β, α) . While playing a match in GS (F , β, α) , player α
will be secretly simulating a match of H(ξ(F<ω),F<ω) in which it is playing
as the Open player using the strategy σ. Since F is a FU-filter, we can find A a
pseudointersection of F . Given F ∈ F , let tF = {min (F ∩A)} . The match in
GS (F , β, α) is played as follows:

• Assume player β plays (s0, F0) in GS (F , β, α) . Let [K0]
<ω
+ be the first

move of Open player in H(ξ(F<ω),F<ω). Let b0 = {min (K0)} , now,
player α imagines that the Point player plays b0 as its first move in
H(ξ(F<ω),F<ω). Let [K1]

<ω
+ be the next move of the Open player in

H(ξ(F<ω),F<ω). Let G0 = (F0 ∩K1)\s0. Player α plays
(
tG0 , G0

)
as its

first move in GS (F , β, α) .

• Assume player β plays (s1, F1) as his response in GS (F , β, α) . Player α
imagines that the Point player played s1 in H(ξ(F<ω),F<ω). Let [K2]

<ω
+

be the response of the Open player inH(ξ(F<ω),F<ω). LetG1 = (F1 ∩K2)\
s1. Player α plays

(
tG1 , G1

)
in GS (F , β, α) .

• Assume player β plays (s2, F2) as its response in GS (F , β, α). Player α
imagines that the Point player played s2 in H(ξ(F<ω),F<ω). Let [K3]

<ω
+

be the response of the Open player inH(ξ(F<ω),F<ω). LetG2 = (F2 ∩K3)\
s2. Player α plays

(
tG2 , G2

)
in GS (F , β, α) .

...
...
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H(ξ(F<ω),F<ω) :

Open [K0]
<ω
+ [K1]

<ω
+ [K2]

<ω
+ [K3]

<ω
+ ...

Point b0 s1 s2 ...

GS (F , β, α) :

β (s0, F0) (s1, F1) (s2, F2) ...

α
(
tG0 , G0

) (
tG1 , G1

) (
tG2 , G2

)
...

We claim that player α won the match in GS (F , β, α) . We need to show
that

⋃
n<ω

(
sn ∪ tGn

)
is a pseudointersection of F . By definition, we know that⋃

n<ω
tGn is a pseudointersection of F , so we only need to show that

⋃
n<ω

sn is

also a pseudointersection. Since σ is a winning strategy, it follows that the
Open player won the simulated game of H(ξ(F<ω),F<ω), which means that
Y = {sn | n < ω} is a converging sequence to F<ω. Hence, we have that Y is a
pseudointersection of [F ]

<ω
. By Lemma 4.5, it follows that

⋃
Y =

⋃
n<ω

sn is a

pseudointersection of F and we are done.

The following definition is due to G. Gruenhage [11]:

Definition 4.7 Let X be a topological space. We say that X is a W -space if
for every a ∈ X, the Open player has a winning strategy in the game H (X, a) .

Regarding this important class of spaces, the following facts are known:

Proposition 4.8 (Gruenhage, [11] see also [12]) Let X be a topological space.

1. If X is first countable, then X is a W -space.

2. If X is a separable W -space, then X is first countable. Therefore, the
notions of first countable and W -space coincide in the realm of separable
spaces.

The reader may consult [11] and [12] to learn more about W -spaces and
other topological games.

Definition 4.9 Let F be a filter on ω. We say that F is countably generated if
it has a countable base. That is, there is a countable family B = {Bn | n ∈ ω} ⊆
F such that for every F ∈ F , there is n < ω such that Bn ⊆ F.
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Notice that F is countably generated if and only if the space ξ (F) is first
countable.

Lemma 4.10 Let F be a filter on ω. The following are equivalent:

1. F is countably generated.

2. F<ω is countably generated.

Proof. Let B be a subfamily of F . It is easy to see that B is a base of F if
and only if

{
[B]

<ω
+ | B ∈ B

}
is a base of F<ω. It follows that if F is countably

generated, then F<ω is countably generated.

For the other implication, assume that F<ω is countably generated. Let
{Xn | n ∈ ω} be a base for F<ω. Since F<ω is generated by

{
[A]

<ω
+ : A ∈ F

}
,

for every n ∈ ω we can find An ∈ F such that [An]
<ω
+ ⊆ Xn. In this way,

{[An]
<ω
+ | n ∈ ω} is a base of F<ω, which implies that {An | n ∈ ω} is a base of

F .

We can now prove the following:

Theorem 4.11 For a FU-filter F on ω the following are equivalent:

1. Sc (ξ (F)) is homeomorphic to ωω.

2. F is countably generated.

3. ξ (F<ω) is a W -space.

4. The player α has a winning strategy for the game GS (F , β, α) .

Proof. The equivalence between (1) and (2) was proved in the Theorem 2.2
of [8]. Note that ξ (F<ω) is a W -space if and only if the Open player has a
winning strategy in H(ξ(F<ω),F<ω) (this is because any other point in ξ(F<ω)
is isolated). From this remark and Theorem 4.6 (2) it follows that clauses (3)
and (4) are equivalent. In order to prove that 2 is equivalent to 3, by Lemma
4.10, we know that F is is countably generated if and only if is F<ω countably
generated and by Proposition 4.8, this holds if and only if ξ (F<ω) is a W -space.

The previous results provides more characterizations of the filters in which
player α has a winning strategy in the game GS (F , β, α) . In the sequel, we will
provide a characterization of the filters for which the hyperspace Sc (ξ (F)) is
Baire (Problem 1.2). We shall need the following kind of filters:

Definition 4.12 A filter F on ω is said to be a FUF -filter if for every X ∈
(F<ω)

+
, there is {sn | n ∈ ω} ⊆ X such that whenever F ∈ F , there is n < ω

such that sm ⊆ F for every m ≥ n.
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It is easy to see that every countably generated filter is a FUF-filter and
every FUF-filter is a FU-filter. We deduce from the definition that a filter F is
a FUF-filter if and only if F<ω is a FU-filter. For convenience, we will denote
by P (F) the set of all Y = {sn | n ∈ ω} ⊆ [ω]

<ω
+ such that whenever F ∈ F ,

there is n < ω such that sm ⊆ F for every m ≥ n. The elements of P (F)
are the pseudointersections of F<ω or equivalently the sequences in [ω]

<ω
+ that

converge to F<ω in the space ξ(F<ω). When Y = 〈sn〉n∈ω is a sequence of

elements of [ω]
<ω
+ , we will often abuse notation and write Y ∈ P (F) to mean

{sn | n ∈ ω} ∈ P (F).

We need the following result, which is a particular of a theorem of G. Gru-
enhage and P. J. Szeptycki [13, Th. 17].

Theorem 4.13 (Gruenhage and Szeptycki, [13]) Let F be a FU-filter4 on
ω. The following are equivalent:

1. F is a FUF-filter.

2. For every family {Xn | n < ω} ⊆ (F<ω)
+
, there is sn ∈ Xn such that

{sn | n ∈ ω} ∈ P (F) .

The reader may note that the statements of Theorem [13, Th. 17] and of
Theorem 4.13 look quite different. For the convenience of the reader, we will
explain how to derive the latter from the former. We need the following notions:

Definition 4.14 Let X be a topological space, A ⊆ [X]
<ω

and a ∈ X.

1. We say that A converges to a (denoted by A −→ a) if for every U ⊆ X
open neighborhood of a, the set {s ∈ A | s * U} is finite.

2. We say that A is a π-network at a (or π-net at a) if for every U ⊆ X
open neighborhood of a, there is s ∈ A such that s ⊆ U.

3. X is Fréchet-Urysohn for finite sets at a (or X is FUfin at a for short) if

for every B ⊆ [X]
<ω

, if B is a π-network at a, then there is C ∈ [B]
≤ω

such that C −→ a.

4. X is Fréchet-Urysohn for finite sets (or X is FUfin for short) if X is FUfin

at all of its points.

It is straightforward to check the following:

Lemma 4.15 Let F be a filter on ω and X ⊆ [ω]
<ω
+ . In the space ξ(F), the

following holds:

4Strictly speaking, the hypothesis that F is a FU-filter is not needed, but since both
statements in the Theorem already imply being Fréchet, we might restrict to the realm of
FU-filters from the beginning.
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1. X is a π-network at F if and only if X ∈ (F<ω)+.

2. X converges to F if and only if X ∈ P (F).

3. ξ(F) is FUfin if and only if ξ(F) is FUfin at F .

4. ξ(F) is FUfin if and only if F is a FUF-filter.

The following is the theorem of G. Gruenhage and P. J. Szeptycki mentioned
before ([13, Th. 17]):

Theorem 4.16 (Gruenhage and Szeptycki) Let X be a topological space
and x ∈ X. The following are equivalent:

1. X is FUfin at x.

2. For every sequence 〈Pn〉n∈ω of π-networks at x consisting of finite sets,
for infinitely many n ∈ ω there are Fn ∈ Pn such that {Fn | n ∈ ω} −→ x.

3. For every sequence 〈Pn〉n∈ω of π-networks at x consisting of finite sets,
for every n ∈ ω there are Fn ∈ Pn such that {Fn | n ∈ ω} −→ x.

4. P has no winning strategy in the game GfinO,P (X,x). 5

In particular using the equivalence of 1 and 3 in the above theorem and
Lemma 4.15, we obtain Theorem 4.13.

We require the introduction of some additional terminology:

Let T be a tree inside of
(
[ω]

<ω)<ω
and let F be a filter on ω. For p ∈

T, we define sucT (p) =
{
s ∈ [ω]

<ω
: p_ 〈s〉 ∈ T

}
(where p_ 〈s〉 denotes the

concatenation of p and the sequence 〈s〉). By [T ] we denote the set of all branches
(maximal paths) through T. Given n < ω, define Tn as the set of sequences of

T of length n. We will say that T is (F<ω)
+

-branching if sucT (p) ∈ (F<ω)
+

for every p ∈ T.

Lemma 4.17 Let F be a filter on ω. The following are equivalent:

1. F is a FUF-filter.

2. For every (F<ω)
+

-branching tree T, there is Y ∈ [T ] such that Y ∈ P (F) .

Proof. (1) ⇒ (2). Assume that T is a (F<ω)
+

-branching tree. Since the

set {sucT (p) | p ∈ T} is included in (F<ω)
+
, by Theorem 4.13, for every p ∈

T, there is sp ∈ sucT (p) such that S = {sp | p ∈ T} ∈ P (F) . We can now

5The definition of this game will not be needed in this paper.
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recursively find a branch Y (whose image) is contained in S. Since S ∈ P (F) ,
it follows that Y ∈ P (F)

.
(2) ⇒ (1). Fix X ∈ (F<ω)

+
and consider the tree T = {∅} ∪ {t_0 . . ._tn :

n < ω and ∀i ≤ n(ti ∈ X)}. It is clear that T is (F<ω)
+

-branching and, by
assumption, there is Y ∈ [T ] so that Y ∈ P (F) . If {sn : n < ω} ⊆ [ω]<ω

satisfies that Y = 〈sn〉n∈ω, then for every F ∈ F , there is n < ω such that
sm ⊆ F for every m ≥ n.

We are ready to provide a solution to Problem 1.2.

Theorem 4.18 For a FU-filter F the following are equivalent:

1. F is a FUF-filter.

2. Sc (ξ (F)) is Baire.

Proof. Recall that Sc (ξ (F)) is Baire if and only if player β does not have a
winning strategy in GS (F , β, α) . We will first prove that if F is not a FUF-filter,
then player β has a winning strategy in GS (F , β, α) , or equivalently (by The-
orem 4.6(1)), that the Point player has a winning strategy in H(ξ(F<ω),F<ω).

Since F is not a FUF-filter, there is X ∈ (F<ω)
+

such that X does not contain
sequences converging to F<ω. The strategy for the Point player is as follows: At
step n, if the Open player plays [Kn]

<ω
+ , then player Point picks wn ∈ X∩[Kn]

<ω
+

(with the requirement that wn 6= wm whenever n 6= m). The outcome of the
game will be an infinite subset of X, which we already know cannot be a con-
vergent sequence, so the Point player wins the match.

Now, assume that F is a FUF-filter, it suffices to prove that player β does
not have a winning strategy in GS (F , β, α) (see Theorem 4.6(1)) Assume that
π is a winning strategy for player β. Base on the strategy π we inductively

build a suitable tree T inside of
(
[ω]

<ω)<ω
and a family {Gp | p ∈ T} , with the

following properties:

1. ∅ ∈ T .

2. Gp ∈ F for every p ∈ T .

3. If p = 〈s0, s1, ..., sn〉 ∈ T then J (p) =
〈
σ (∅) , G〈s0〉, s0, G〈s0,s1〉, ..., Gp

〉
is

a legal partial play of GS(F , β, α) in which player β is using his strategy
π. 6

4. T1 is the set of all 〈s〉 such that s ∈ [ω]
<ω

and there is G ∈ F such that
〈σ (∅) , G, s〉 is a legal partial play of GS(F , β, α) in which player β is using
his strategy π.

5. For every s such that 〈s〉 ∈ T1, we choose and fix G〈s〉 as above.

6By σ (∅) we denote the first move of player I according to σ.
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6. Given a node p = 〈s0, s1, ..., sn〉 ∈ T , let sucT (p) be the set of all z ∈ [ω]
<ω

for which there is G ∈ F such that J (p)
_ 〈G, z〉 is a legal partial play (in

which player β is using his strategy π). We choose and fix Gz with this
properties.

We claim that T is (F<ω)
+

-branching. Indeed, fix p = 〈s0, s1, ..., sn〉 ∈ T
and an arbitrary G ∈ F . Since π is a winning strategy for β, when α chooses
G then J (p)

_ 〈G〉 is a legal play, and so there must be s ∈ sucT (p) such that
s ⊆ G. Since F is a FUF-filter, by Lemma 4.17, there is Y = 〈sn〉n∈ω ∈ [T ] such

that Y ∈ P (F) . Note that T induces a run of the game GS (F , β, α) . Since
Y is a pseudointersection of F<ω, it follows from Lemma 4.5 that

⋃
n∈ω

sn is a

pseudointersection of F , so player α won the match.

After having obtained Theorems 4.11 and 4.18, it is then natural to ask the
following question:

Is there a FU-filter F on ω such that Sc (F) is Baire, but not
homeomorphic to ωω? (i.e. GS (F , β, α) is not determined)

This is the same as asking if there is an uncountably generated FUF-filter.
Many (consistent) examples of such filters have been constructed by using some
set-theoretical assumptions:

Proposition 4.19 There is an uncountably generated FUF-filter under the fol-
lowing hypotheses:

1. ([20]) p > ω1.

2. ([20]) b = p.

3. ([16]) ♦ (2,=) .

In what follows, we will describe a connection between the uncountably
generated FUF-filters and some Fréchet-Urysohn groups.

Consider the Boolean group
(
[ω]

<ω
,4
)
, where 4 is the symmetric differ-

ence. We know that every filter F on ω induces a topological group topology on
[ω]

<ω
by declaring that F<ω is an open local base for ∅. Denote this topology

by τF and the topological group by GF . Clauses (1) and (2) of the following
theorem were proved equivalent by E. A. Reznichenko and O. V. Sipacheva in
their article [22] and the equivalence with (3) follows from Theorem 4.18:

Theorem 4.20 Let F be a filter on ω. The following are equivalent:

1. F is an uncountably generated FUF-filter.
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2. GF is a non-first countable Fréchet-Urysohn group.

3. F is uncountably generated and Sc (ξ (F)) is Baire.

In connection with this last result, we mention that a famous problem of V.
I. Malykhin asked if there is a Fréchet-Urysohn group that is not first count-
able7. Based on a previous theorem of J. Brendle and M. Hrušák (see [1]), this
important problem was finally solved by M. Hrušák and U. A. Ramos-Garcia:

Theorem 4.21 (Hrušák and Ramos-Garcia, [16]) It is consistent that ev-
ery Fréchet-Urysohn group is first countable.

It follows from the previous theorem that it is consistent that every FUF-filter
is countably generated. Hence, we have the next corollary:

Corollary 4.22 It is consistent that for every filter F on ω, the space Sc (F) is
Baire if and only if Sc (F) is homeomorphic to ωω (i.e. the game GS (F , β, α)
is always determined).

In this way, in the model defined in [16], we have that the gameH(ξ(F<ω),F<ω)
is determined for every filter F on ω. On the other hand, there are ZFC exam-
ples of filters G on ω for which the game H(ξ(G),G) is undetermined (see [20]
and [12]). By virtue of Corollary 4.22, we know that those examples can not be
of the form F<ω (this remark was pointed out to us by M. Hrušák).

S. Todorcevic and C. E. Uzcategui initiated the study of analytic topologies
over the natural numbers. Since we can identify every subset of ω with its char-
acteristic function, we can define a topology on ℘ (ω) that is homeomorphic to
2ω. Since every topology over ω is a subset of ℘ (ω), we can say when a topology
is Borel or analytic. Regarding Malykhin’s Problem in the definable setting, S.
Todorcevic and C. E. Uzcategui established the next result (see Theorem 7.3 of
[25]):

Theorem 4.23 (Todorcevic and Uzcategui, [25]) Every Fréchet-Urysohn
analytic group is first countable.8

In particular, it follows that there are no uncountably generated analytic
FUF-filters. We will conclude this article by providing an alternative proof of
this particular case of Theorem 4.23. We will use a separation theorem due to
S. Todorcevic. In order to do this, we need the following definitions:

7Recall the classical result of G. Birkhoff and S. Kakutani ([14, Th. 8.3]) which states that
a topological group is metrizable if and only if it is first countable.

8Note that by definition, every analytic group is countable.
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Definition 4.24 Let A,B ⊆ [ω]
ω
.

1. A is called countably generated in B if there is a family {Bn | n < ω} ⊆ B
such that for every A ∈ A, there is n < ω such that A ⊆ Bn.

2. We say that A and B are orthogonal if A ∩ B is finite for every A ∈ A
and B ∈ B.

For a tree T ⊆ [ω]
<ω

and an ideal I on ω, we will say that T is I-branching
if sucT (p) = {n | p_ 〈n〉 ∈ T} is an infinite element of I for every p ∈ T
(in the terminology of [26] this would be call an I-tree). In the paper [26], S.
Todorcevic proved the following interesting dichotomy:

Theorem 4.25 (Todorcevic, [26]) Let I and J be two orthogonal ideals on
ω such that I is analytic. One of the following holds:

1. I is countably generated in J⊥.

2. There is a J -branching tree T ⊆ [ω]
<ω

such that [T ] ⊆ I.

The following corollary is a direct consequence of the previous dichotomy:

Corollary 4.26 Let I be an analytic FU-ideal on ω. Then one of the following
statement holds:

1. I is countably generated.

2. There is an I⊥-branching tree T ⊆ [ω]
<ω

such that [T ] ⊆ I.

Proof. Since I is a FU-ideal, it follows that I = I⊥⊥. The result follows by
applying Theorem 4.25 to I and I⊥.

We are ready to prove the following particular case of 4.23:

Proposition 4.27 There are no uncountably generated analytic FUF-filters.

Proof. Let F be an uncountably generated analytic FU-filter. By the corol-
lary 4.26, we get that there is an (F∗)⊥-branching tree T ⊆ [ω]

<ω
such that

[T ] ⊆ F∗. For every p = 〈m0, ...,mn〉 ∈ T, define p̂ = 〈{m0} , ..., {mn}〉 . Let

S = {p̂ | p ∈ T} and note that S ⊆
(
[ω]

<ω)<ω
is a tree. Furthermore, S is an

(F<ω)
+

-branching tree because T is an (F∗)⊥-branching tree. Since [T ] ⊆ F∗,
we get that [S] ∩ P (F) = ∅. By Proposition 4.17, we conclude that F is not a
FUF-filter.
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[1] J. Brendle and M. Hrušák, Countable Fréchet Boolean Groups: An Inde-
pendence Result, J. Sym. Logic 74 (2009), 1061–1068.

[2] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer-
Verlag, Berlin (1974).

[3] P. Erdös and S. Shelah, Separability properties of almost-disjoint families
of sets, Israel J. Math. 12 (1972), 207—-214.

[4] F. Galvin and P. Simon, A Cech function in ZFC, Topology Appl. 163
(2014), 128–141.

[5] S. Garcia-Ferreira, Y. F. Ortiz-Castillo The hyperspace of convergent se-
quences Topology Appl. 196 (2015), part B. 795–804.

[6] S. Garcia-Ferreira and J. E. Rivera-Gómez, Ordering Fréchet-Urysohn fil-
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